{vipor}: 1 1>2的小提琴散点图!
install.packages("vipor")
library(vipor)
set.seed(1) # 设置随机种子,确保结果可重复
mydata_norm <- data.frame(
x = rep("Mean = 0, sd = 1", 200),
y = rnorm(200, mean = 0, sd = 1) # 正态分布数据
)
set.seed(2) # 设置随机种子,确保结果可重复
mydata_bi <- data.frame(
x = rep("Bimodal", 90),
y = c(rnorm(30, mean = -3), rnorm(60, mean = 3))
)
set.seed(3) # 设置随机种子,确保结果可重复
mydata_gamma <- data.frame(
x = rep("The Gamma Distribution", 50),
y = rgamma(50, 1) # 生成50个伽马分布随机数
)
set.seed(4) # 设置随机种子,确保结果可重复
mydata_cauchy <- data.frame(
x = rep("the Cauchy Distribution", 100),
y = rcauchy(100) # 生成100个柯西分布的随机数
)
summary(mydata_norm)
summary(mydata_bi)
summary(mydata_gamma)
summary(mydata_cauchy)




par(mfrow = c(1, 2))
vpPlot(mydata_norm$x, mydata_norm$y)
vpPlot(mydata_norm$x, mydata_norm$y,
pch = 23, # 不同图形
bg = "gold", # 图形内填充颜色,只适用 pch = 21:25
col = "black", # 图形的外圈线条颜色
lwd = 1.5, # 图形的线条粗细
cex = 1.8) # 图形的大小


par(mfrow = c(1, 3))
vpPlot(mydata_bi$x, mydata_bi$y)
vpPlot(mydata_gamma$x, mydata_gamma$y)
vpPlot(mydata_cauchy$x, mydata_cauchy$y)

summary(iris)

par(mfrow=c(1,1))
vpPlot(iris$Species, iris$Sepal.Length,
ylab = "Sepal_Length")
vpPlot(iris$Species, iris$Sepal.Width,
ylab = "Sepal_Width",
pch = 10,
las = 2)
vpPlot(iris$Species, iris$Petal.Length,
ylab = "Petal_Length",
pch = 16,
cex = 0.6)
vpPlot(iris$Species, iris$Petal.Width,
ylab = "Petal_Width",
pch = 6)





[1]. https://github.com/sherrillmix/vipor
2024-06-13 12:32